Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 04 2024 07:55:39
%S 1,2,7,2,12,14,15,3,14,39,28,14,24,30,4,2,39,28,42,24,3,91,60,7,32,48,
%T 10,30,72,13,63,13,124,60,124,28,60,84,40,117,96,6,84,56,56,195,124,
%U 14,80,64,65,171,120,20,39,45,62,117,168,8,96,126,10,2,224,403,126,78,84,403
%N a(n) is the numerator of sigma(sigma(n))/n.
%H Robert Israel, <a href="/A318059/b318059.txt">Table of n, a(n) for n = 1..10000</a>
%F For n=2, sigma(sigma(n)) = 4, so a(2) = 2.
%e Fractions begin with 1, 2, 7/3, 2, 12/5, 14/3, 15/7, 3, 14/9, 39/10, 28/11, 14/3, ...
%p seq(numer((numtheory:-sigma@@2)(n)/n),n=1..100); # _Robert Israel_, Aug 14 2018
%t a[n_] := Numerator[DivisorSigma[1, DivisorSigma[1, n]]/n]; Array[a, 100] (* _Amiram Eldar_, Apr 04 2024 *)
%o (PARI) a(n) = numerator(sigma(sigma(n))/n);
%Y Cf. A000203 (sigma), A051027.
%Y Cf. A098223 (when denominator is 1), A318060 (denominator).
%K nonn,frac
%O 1,2
%A _Michel Marcus_, Aug 14 2018