login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(5*k))).
2

%I #13 May 08 2020 12:45:43

%S 1,1,2,3,5,8,12,17,25,35,51,69,96,129,175,235,312,410,539,700,913,

%T 1173,1508,1923,2450,3105,3920,4926,6177,7710,9614,11923,14766,18218,

%U 22435,27550,33750,41231,50278,61150,74259,89932,108744,131193,158025,189979,227998,273125,326692

%N Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(5*k))).

%C Convolution of A000712 and A145466.

%C Convolution inverse of A030202.

%C Number of partitions of n if there are 2 kinds of parts that are multiples of 5.

%H Zakir Ahmed, Nayandeep Deka Baruah, Manosij Ghosh Dastidar, <a href="https://doi.org/10.1016/j.jnt.2015.05.002">New congruences modulo 5 for the number of 2-color partitions</a>, Journal of Number Theory, Volume 157, December 2015, Pages 184-198.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + x^(3*k) + 2*x^(4 k))/(k*(1 - x^(5*k)))).

%F a(n) ~ exp(2*Pi*sqrt(n/5)) / (4 * 5^(1/4) * n^(5/4)). - _Vaclav Kotesovec_, Aug 14 2018

%e a(5) = 8 because we have [5], [5'], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].

%p a:=series(mul(1/((1-x^k)*(1-x^(5*k))),k=1..55),x=0,49): seq(coeff(a,x,n),n=0..48); # _Paolo P. Lava_, Apr 02 2019

%t nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(5 k))), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^5]), {x, 0, nmax}], x]

%t nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + x^(3 k) + 2 x^(4 k))/(k (1 - x^(5 k))), {k, 1, nmax}]], {x, 0, nmax}], x]

%t Table[Sum[PartitionsP[k] PartitionsP[n - 5 k], {k, 0, n/5}], {n, 0, 48}]

%Y Cf. A000712, A002513, A030202, A030205, A145466, A318026, A318027.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 13 2018