login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318016
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8
1, 2, 2, 4, 8, 4, 8, 28, 28, 8, 16, 97, 118, 97, 16, 32, 338, 508, 508, 338, 32, 64, 1178, 2130, 3062, 2130, 1178, 64, 128, 4105, 8971, 17703, 17703, 8971, 4105, 128, 256, 14305, 37700, 103633, 133136, 103633, 37700, 14305, 256, 512, 49850, 158613
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4........8........16..........32...........64...........128
...2.....8.....28.......97.......338........1178.........4105.........14305
...4....28....118......508......2130........8971........37700........158613
...8....97....508.....3062.....17703......103633.......603215.......3512154
..16...338...2130....17703....133136.....1033121......7960400......61442813
..32..1178...8971...103633...1033121....10674882....109443619....1125607630
..64..4105..37700...603215...7960400...109443619...1493271874...20443576030
.128.14305.158613..3512154..61442813..1125607630..20443576030..372575745070
.256.49850.667178.20446744.473867122.11570430384.279709797313.6788774522485
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4)
k=3: [order 11] for n>14
k=4: [order 26] for n>29
k=5: [order 61] for n>65
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..0. .0..1..0..1. .0..0..0..0. .0..1..0..1
..0..1..1..0. .0..0..0..1. .1..0..1..1. .0..0..0..0. .1..0..0..0
..1..1..0..1. .0..0..0..1. .0..0..1..1. .1..1..1..1. .0..0..1..1
..0..0..0..1. .0..0..0..1. .0..0..0..0. .1..1..1..1. .1..1..1..1
..0..0..0..0. .1..0..0..0. .1..0..1..1. .0..0..0..0. .1..1..1..1
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A299675 A299753 A300267 * A320402 A208709 A300472
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 12 2018
STATUS
approved