Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 13 2020 05:18:21
%S 1,2,11,100,1321,22622,474851,11786920,337650001,10962556442,
%T 397804232891,15954966065740,700861670953081,33464274335643062,
%U 1725656338796874131,95578727117480612560,5658893822397686566561,356659432612090891074482,23841281202421071709150571,1684762749472172141605523380
%N E.g.f. A(x) satisfies: A(x) = sin(x) + cos(x)*A(x)^2 with A(0)=0.
%H Robert Israel, <a href="/A318007/b318007.txt">Table of n, a(n) for n = 1..368</a>
%F E.g.f. A(x) satisfies:
%F (1) A(x) = sin(x) + cos(x)*A(x)^2.
%F (2) A(x) = sin(x) * Sum_{n>=0} binomial(2*n,n)/(n+1) * sin(2*x)^n/2^n.
%F (3) A(x) = (1 - sqrt(1 - 2*sin(2*x))) / (2*cos(x)).
%F (4) A(x) = 2*sin(x) / (1 + sqrt(1 - 2*sin(2*x))).
%F a(n) ~ (sqrt(3) - 1) * 2^(2*n - 3/2) * 3^(n - 1/4) * n^(n-1) / (Pi^(n - 1/2) * exp(n)). - _Vaclav Kotesovec_, Oct 13 2020
%e E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 100*x^4/4! + 1321*x^5/5! + 22622*x^6/6! + 474851*x^7/7! + 11786920*x^8/8! + 337650001*x^9/9! + 10962556442*x^10/10! + ...
%e such that A(x) = sin(x) + cos(x)*A(x)^2.
%p E:= (1 - sqrt(1 - 2*sin(2*x))) / (2*cos(x)):
%p S:= series(E,x,31):
%p seq(coeff(S,x,j)*j!,j=1..30); # _Robert Israel_, Aug 29 2018
%t m = 21; A[x_] = (1 - Sqrt[1 - 2 Sin[2 x]] )/(2 Cos[x]); Rest[Range[0, m - 1]! * CoefficientList[A[x] + O[x]^m, x]] (* _Jean-François Alcover_, Apr 29 2019 *)
%o (PARI) {a(n) = my(A = 2*sin(x +x^2*O(x^n)) / (1 + sqrt(1 - 2*sin(2*x +x^2*O(x^n)))) ); n!*polcoeff(A, n)}
%o for(n=1, 25, print1(a(n), ", "))
%Y Cf. A318003, A318004, A318599.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Aug 28 2018