Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 16 2024 06:02:15
%S 6,3,8,1,8,5,8,2,0,8,6,0,6,4,4,1,5,3,0,1,5,5,0,3,6,5,9,4,4,4,0,6,7,7,
%T 0,1,2,6,5,1,5,7,5,4,3,9,7,7,9,9,7,6,8,3,4,2,1,0,6,2,0,8,1,5,8,0,5,7,
%U 5,4,8,5,1,3,9,7,0,7,9,2,5,0,2,7,6
%N Decimal expansion of (2^(1/3)-1)^(1/3).
%C (2^(1/3)-1)^(1/3) = (1/9)^(1/3) - (2/9)^(1/3) + (4/9)^(1/3) is a famous and remarkable identity of Ramanujan's.
%C Ramanujan's question 1076 (ii), see Berndt and Rankin in References: Show that (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) = (4/9)^(1/3)-(2/9)^(1/3)+(1/9)^(1/3). - _Hugo Pfoertner_, Aug 28 2018
%D B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0-8218-2624-7, page 222 (JIMS 11, page 199).
%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.1.2, p. 4.
%D S. Ramanujan, Coll. Papers, Chelsea, 1962, page 331, Question 682; page 334 Question 1076.
%H Susan Landau, <a href="https://www.researchgate.net/publication/2629046_Simplification_of_Nested_Radicals">Simplification of nested radicals</a>, SIAM Journal on Computing 21.1 (1992): 85-110. See page 85. [Do not confuse this paper with the short FOCS conference paper with the same title, which is only a few pages long.]
%H S. Ramanujan, <a href="https://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/question/q682.htm">Question 682</a>, Journal of the Indian Mathematical Society, VII, p. 160.
%H S. Ramanujan, <a href="https://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/question/q1076.htm">Question 1076</a>, Journal of the Indian Mathematical Society, XI, p. 199.
%H Vincent Thill, <a href="http://vincent-thill.fr/2021/04/identite-du-mois-davril-2021/">Radicaux et Ramanujan</a>, April 2021, see k.
%F From _Michel Marcus_, Jan 08 2022: (Start)
%F Equals (A002580-1)^(1/3).
%F k^(3*n) = x(n) + A002580*y(n) + A005480*z(n) where k is this constant z(n) = A108369(n-1), y(n) = z(n)+z(n+1), x(n) = y(n)+y(n+1); A002580 and A005480 are the cube root of 2 and 4. (End)
%F Minimal polynomial: 1 - 3*x^3 - 3*x^6 - x^9. - _Stefano Spezia_, Oct 15 2024
%e 0.638185820860644153015503659444067701265157543977997683421...
%p evalf((4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8)); # _Muniru A Asiru_, Aug 28 2018
%t RealDigits[N[Power[Power[2, (3)^-1] - 1, (3)^-1], 100]] (* _Peter Cullen Burbery_, Apr 09 2022 *)
%o (PARI) (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) /* _Hugo Pfoertner_ Aug 28 2018 */
%o (PARI) sqrtn(1/9, 3) - sqrtn(2/9, 3) + sqrtn(4/9, 3) \\ _Michel Marcus_, Jan 07 2022
%Y Cf. A318526.
%Y Cf. A002580, A005480, A108369.
%K nonn,cons
%O 0,1
%A _N. J. A. Sloane_, Aug 27 2018