login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317871
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 4, 6, 6, 4, 0, 0, 9, 4, 26, 4, 9, 0, 0, 22, 5, 88, 88, 5, 22, 0, 0, 53, 10, 301, 220, 301, 10, 53, 0, 0, 130, 36, 1089, 759, 759, 1089, 36, 130, 0, 0, 320, 34, 4340, 3303, 4692, 3303, 4340, 34, 320, 0, 0, 788, 43, 16696, 11807, 27620
OFFSET
1,12
COMMENTS
Table starts
.0...0..0.....0.....0......0.......0.........0..........0...........0
.0...1..1.....2.....4......9......22........53........130.........320
.0...1..1.....6.....4......5......10........36.........34..........43
.0...2..6....26....88....301....1089......4340......16696.......64514
.0...4..4....88...220....759....3303.....11807......45995......161983
.0...9..5...301...759...4692...27620....167100.....990871.....5767582
.0..22.10..1089..3303..27620..163297...1242087....7872632....53760082
.0..53.36..4340.11807.167100.1242087..13125877..113996501..1068543427
.0.130.34.16696.45995.990871.7872632.113996501.1146051177.13578301848
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -a(n-4) -a(n-5) -a(n-6)
k=3: [order 18]
k=4: [order 83] for n>86
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..0. .0..1..0..1
..1..0..0..0. .1..0..0..0. .1..0..1..0. .1..0..1..1. .1..0..0..1
..1..1..0..1. .0..0..1..0. .0..1..1..1. .1..0..1..0. .0..0..1..0
..0..0..0..1. .1..1..0..1. .1..0..1..0. .0..0..1..0. .1..0..0..1
..1..0..1..0. .0..1..1..0. .0..1..0..1. .1..0..0..1. .1..0..1..0
CROSSREFS
Column 2 is A317735.
Sequence in context: A241291 A317741 A317902 * A082995 A079549 A143374
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 09 2018
STATUS
approved