login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of non-isomorphic set-systems on n vertices with no singletons.
17

%I #18 Dec 04 2024 10:33:56

%S 1,1,2,8,180,612032,200253854316544,263735716028826427534807159537664,

%T 5609038300883759793482640992086670066760184863720423808367168537493504

%N Number of non-isomorphic set-systems on n vertices with no singletons.

%H Loïc Foissy, <a href="https://arxiv.org/abs/2304.00810">Hopf algebraic structures on hypergraphs and multi-complexes</a>, arXiv:2304.00810 [math.CO], 2023.

%H Peter H. van der Kamp, <a href="https://arxiv.org/abs/2411.18264">Hypergraphs and homogeneous Lotka-Volterra systems with linear Darboux polynomials</a>, arXiv:2411.18264 [nlin.SI], 2024. See p. 4.

%e Non-isomorphic representatives of the a(3) = 8 set-systems:

%e 0,

%e {12}, {123},

%e {12}{13}, {12}{123},

%e {12}{13}{23}, {12}{13}{123},

%e {12}{13}{23}{123}.

%t sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];

%t Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]>1&]],Or[Length[#]==0,Union@@#==Range[Max@@Union@@#]]&]]],{n,4}]

%t (* second program *)

%t Table[Sum[2^PermutationCycles[Ordering[Map[Sort,Subsets[Range[n],{2,n}]/.Rule@@@Table[{i,prm[[i]]},{i,n}],{1}]],Length]/n!,{prm,Permutations[Range[n]]}],{n,6}] (* _Gus Wiseman_, Dec 12 2018 *)

%Y The spanning case is A317795.

%Y Cf. A000088, A000612, A003180, A007716, A055621, A283877, A300913, A306005, A317533, A317757, A319876.

%K nonn

%O 0,3

%A _Gus Wiseman_, Aug 07 2018

%E More terms from _Gus Wiseman_, Dec 12 2018