%I #8 Aug 08 2018 07:53:25
%S 1,2,3,5,9,11,23,25,27,31,81,83,97,103,115,121,125,127,243,419,431,
%T 509,515,529,563,575,625,631,661,691,709,729,961,1067,1331,1543,2095,
%U 2187,2369,2575,2645,2875,2897,3001,3125,3637,3691,3803,4091,4201,4637,4663
%N Matula-Goebel numbers of locally connected rooted trees.
%C An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.
%e The sequence of locally connected trees together with their Matula-Goebel numbers begins:
%e 1: o
%e 2: (o)
%e 3: ((o))
%e 5: (((o)))
%e 9: ((o)(o))
%e 11: ((((o))))
%e 23: (((o)(o)))
%e 25: (((o))((o)))
%e 27: ((o)(o)(o))
%e 31: (((((o)))))
%e 81: ((o)(o)(o)(o))
%e 83: ((((o)(o))))
%e 97: ((((o))((o))))
%t multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
%t Select[Range[1000],rupQ[#]&]
%Y A subset of A184155.
%Y Cf. A000081, A276625, A286518, A286520, A304714, A316470, A316495, A316502, A317077, A317078, A317785.
%K nonn
%O 1,2
%A _Gus Wiseman_, Aug 07 2018