Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 09 2021 02:47:46
%S 0,1,6,30,130,629,2930,15019,78224,438626,2548481
%N Number of multiset partitions of strongly normal multisets of size n such that the blocks have empty intersection.
%C A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
%e The a(3) = 6 strongly normal multiset partitions with empty intersection:
%e {{2},{1,1}}
%e {{1},{2,3}}
%e {{2},{1,3}}
%e {{3},{1,2}}
%e {{1},{1},{2}}
%e {{1},{2},{3}}
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t Table[Length[Join@@Table[Select[mps[m],Intersection@@#=={}&],{m,strnorm[n]}]],{n,6}]
%Y Cf. A007716, A035310, A255906, A317073, A281116, A317077, A317078, A317532, A317533.
%Y Cf. A317748, A317751, A317752, A317757, A317775.
%K nonn,more
%O 1,3
%A _Gus Wiseman_, Aug 06 2018
%E a(10)-a(11) from _Robert Price_, May 08 2021