|
|
A317733
|
|
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
|
|
7
|
|
|
0, 1, 1, 1, 7, 1, 2, 25, 25, 2, 3, 98, 161, 98, 3, 5, 383, 1250, 1250, 383, 5, 8, 1493, 9541, 19208, 9541, 1493, 8, 13, 5824, 72715, 293378, 293378, 72715, 5824, 13, 21, 22717, 554642, 4458098, 8931649, 4458098, 554642, 22717, 21, 34, 88609, 4229957
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts
..0.....1........1...........2.............3................5
..1.....7.......25..........98...........383.............1493
..1....25......161........1250..........9541............72715
..2....98.....1250.......19208........293378..........4458098
..3...383.....9541......293378.......8931649........270714329
..5..1493....72715.....4458098.....270714329......16360102553
..8..5824...554642....67837952....8216055128.....990049380944
.13.22717..4229957..1032124178..249314217853...59904290609773
.21.88609.32260015.15703109762.7565327218559.3624564255839937
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..364
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: a(n) = 6*a(n-1) +11*a(n-2) +11*a(n-3) -2*a(n-4) -a(n-5) -2*a(n-6)
k=4: a(n) = 12*a(n-1) +42*a(n-2) +107*a(n-3) -30*a(n-4) +12*a(n-5) -16*a(n-6)
k=5: [order 21]
k=6: [order 36]
k=7: [order 81]
|
|
EXAMPLE
|
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..0..0
..1..0..1..0. .1..1..0..0. .1..1..1..1. .1..1..0..0. .0..1..1..1
..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1
..1..0..1..1. .1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..0
..1..1..0..1. .1..0..1..1. .1..0..0..0. .0..1..1..0. .0..1..0..1
|
|
CROSSREFS
|
Column 1 is A000045(n-1).
Column 2 is A304421.
Sequence in context: A305692 A317072 A316953 * A258335 A266985 A286912
Adjacent sequences: A317730 A317731 A317732 * A317734 A317735 A317736
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Aug 05 2018
|
|
STATUS
|
approved
|
|
|
|