login
A317733
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 7, 1, 2, 25, 25, 2, 3, 98, 161, 98, 3, 5, 383, 1250, 1250, 383, 5, 8, 1493, 9541, 19208, 9541, 1493, 8, 13, 5824, 72715, 293378, 293378, 72715, 5824, 13, 21, 22717, 554642, 4458098, 8931649, 4458098, 554642, 22717, 21, 34, 88609, 4229957
OFFSET
1,5
COMMENTS
Table starts
..0.....1........1...........2.............3................5
..1.....7.......25..........98...........383.............1493
..1....25......161........1250..........9541............72715
..2....98.....1250.......19208........293378..........4458098
..3...383.....9541......293378.......8931649........270714329
..5..1493....72715.....4458098.....270714329......16360102553
..8..5824...554642....67837952....8216055128.....990049380944
.13.22717..4229957..1032124178..249314217853...59904290609773
.21.88609.32260015.15703109762.7565327218559.3624564255839937
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: a(n) = 6*a(n-1) +11*a(n-2) +11*a(n-3) -2*a(n-4) -a(n-5) -2*a(n-6)
k=4: a(n) = 12*a(n-1) +42*a(n-2) +107*a(n-3) -30*a(n-4) +12*a(n-5) -16*a(n-6)
k=5: [order 21]
k=6: [order 36]
k=7: [order 81]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..0..0
..1..0..1..0. .1..1..0..0. .1..1..1..1. .1..1..0..0. .0..1..1..1
..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1
..1..0..1..1. .1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..0
..1..1..0..1. .1..0..1..1. .1..0..0..0. .0..1..1..0. .0..1..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304421.
Sequence in context: A305692 A317072 A316953 * A258335 A266985 A286912
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 05 2018
STATUS
approved