login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317733
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 7, 1, 2, 25, 25, 2, 3, 98, 161, 98, 3, 5, 383, 1250, 1250, 383, 5, 8, 1493, 9541, 19208, 9541, 1493, 8, 13, 5824, 72715, 293378, 293378, 72715, 5824, 13, 21, 22717, 554642, 4458098, 8931649, 4458098, 554642, 22717, 21, 34, 88609, 4229957
OFFSET
1,5
COMMENTS
Table starts
..0.....1........1...........2.............3................5
..1.....7.......25..........98...........383.............1493
..1....25......161........1250..........9541............72715
..2....98.....1250.......19208........293378..........4458098
..3...383.....9541......293378.......8931649........270714329
..5..1493....72715.....4458098.....270714329......16360102553
..8..5824...554642....67837952....8216055128.....990049380944
.13.22717..4229957..1032124178..249314217853...59904290609773
.21.88609.32260015.15703109762.7565327218559.3624564255839937
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +3*a(n-2) +2*a(n-3)
k=3: a(n) = 6*a(n-1) +11*a(n-2) +11*a(n-3) -2*a(n-4) -a(n-5) -2*a(n-6)
k=4: a(n) = 12*a(n-1) +42*a(n-2) +107*a(n-3) -30*a(n-4) +12*a(n-5) -16*a(n-6)
k=5: [order 21]
k=6: [order 36]
k=7: [order 81]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..0..0
..1..0..1..0. .1..1..0..0. .1..1..1..1. .1..1..0..0. .0..1..1..1
..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1
..1..0..1..1. .1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..0
..1..1..0..1. .1..0..1..1. .1..0..0..0. .0..1..1..0. .0..1..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A304421.
Sequence in context: A305692 A317072 A316953 * A258335 A266985 A286912
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 05 2018
STATUS
approved