Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 10 2021 11:00:00
%S 1,1,2,3,5,6,11,13,22,29,46,57,94,115,180,230,349,435,671,830,1245,
%T 1572,2320,2894,4287,5328,7773,9752,14066,17547,25328,31515,45010,
%U 56289,79805,99467,140778,175215,246278,307273,429421,534774,745776,927776,1287038
%N Number of powerful rooted trees with n nodes.
%C An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.
%H Alois P. Heinz, <a href="/A317707/b317707.txt">Table of n, a(n) for n = 1..8000</a>
%e The a(7) = 11 powerful rooted trees:
%e ((((((o))))))
%e (((((oo)))))
%e ((((ooo))))
%e ((((o)(o))))
%e (((oooo)))
%e ((ooooo))
%e (((o))((o)))
%e ((oo)(oo))
%e ((o)(o)(o))
%e (oo(o)(o))
%e (oooooo)
%p h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
%p `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
%p end:
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
%p end:
%p a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
%p seq(a(n), n=1..50); # _Alois P. Heinz_, Aug 31 2018
%t purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]];
%t Table[Length[purt[n]],{n,10}]
%t (* Second program: *)
%t h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
%t a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
%t Array[a, 50] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *)
%Y Cf. A000081, A001190, A001694, A004111, A301700, A303431, A317102.
%Y Cf. A317705, A317708, A317709, A317710, A317711, A317712, A317718, A317719.
%K nonn
%O 1,3
%A _Gus Wiseman_, Aug 05 2018
%E a(27)-a(45) from _Alois P. Heinz_, Aug 31 2018