Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 07 2022 23:16:00
%S 1,2,6,24,120,4320,30240,8910720,14182439040,17116004505600,
%T 154345556085770649600,170974031122008628879954060917200710847692800,
%U 141310897947438348259849402738485523264343544818565120000
%N a(n) = smallest m such that sigma(m) = n*m/2.
%C Interleaving of A007539 and A088912.
%C For even n, a(n) is a multiply perfect number; for odd n it is a hemiperfect number.
%C Note that 1 is the only number with abundancy 1, and 2 is the only number with abundancy 3/2 (in other words, 1 and 2 are solitary numbers; see A014567). For k >= 4 it is not known whether there are finitely many or infinitely many numbers with abundancy k/2. Also it is not known whether a(n) < a(n+1) always holds.
%C On the Riemann Hypothesis (RH), a(n) > exp(exp(n/(2*exp(gamma)))), where gamma = 0.5772156649... is the Euler-Mascheroni constant (A001620).
%H Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a>
%H Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a>
%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiplicative">Multiplicative functions</a>: Abundancy = sigma(n)/n
%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiperfect">Multiperfect and hemiperfect numbers</a>
%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy: Some Resources </a>
%F a(2n) = A007539(n), a(2n+1) = A088912(n), n > 0.
%e a(7) = 4320 since sigma(4320) = 15120 = 7/2*4320 and 4320 is the smallest m such that sigma(m)/m = 7/2.
%t Nest[Append[#, Block[{m = #1[[-1]] + 1}, While[DivisorSigma[1, m] != #2 m/2, m++]; m]] & @@ {#, Length@ # + 2} &, {1}, 6] (* _Michael De Vlieger_, Aug 05 2018 *)
%o (PARI) for(n=2, 10, for(m=1, 10^12, if(sigma(m)/m==n/2, print1(m, ", "); break())))
%Y Cf. A007539, A088912, A246454.
%Y Numbers with abundancy k/2: A000396 (k=4), A141643 (k=5), A005820 (k=6), A055153 (k=7), A027687 (k=8), A141645 (k=9), A046060 (k=10), A159271 (k=11), A046061 (k=12), A160678 (k=13).
%K nonn,hard,more
%O 2,2
%A _Jianing Song_, Aug 04 2018