login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n.
9

%I #11 Sep 15 2018 02:05:27

%S 1,3,34,602,14872,472138,18323359,840503724,44489123726,2668985463839,

%T 178960530393633,13263068003965046,1076580864432281157,

%U 94987639225399100006,9051397653144246683937,926407121115738135640677,101357200280211387377806719,11804887470887800839909147484

%N Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n.

%C A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

%H Andrew Howroyd, <a href="/A317653/b317653.txt">Table of n, a(n) for n = 1..200</a>

%e The a(3) = 34 free pure symmetric multifunctions:

%e 1[1[1]], 1[1,1], 1[1][1],

%e 1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],

%e 1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],

%e 1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];

%t got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];

%t Table[Sum[Length[exprUsing[got[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,6}]

%o (PARI) \\ here R(n,1) is A052893.

%o EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o R(n,k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}

%o seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ _Andrew Howroyd_, Sep 14 2018

%Y Cf. A001003, A052893, A053492, A255906, A277996, A279944, A280000.

%Y Cf. A317652, A317654, A317655, A317656, A317658.

%K nonn

%O 1,2

%A _Gus Wiseman_, Aug 03 2018

%E Terms a(8) and beyond from _Andrew Howroyd_, Sep 14 2018