login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317648 a(1) = a(2) = 1; for n >= 3, a(n) = a(t(n)) + a(n-t(n)) where t = A004001. 5
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 11, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 16, 17, 17, 18, 19, 20, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 27, 27, 27, 27, 27, 27, 28, 29, 30, 31, 31, 31, 31, 31, 32, 32, 33, 33, 34, 35, 36, 37, 38, 38, 38, 38, 38, 38, 39, 40, 41, 42, 43, 44, 45 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This sequence hits every positive integer.

Let b(1) = b(2) = b(3) = 1; for n >= 4, b(n) = b(t(n)) + b(n-t(n)) where t = A004001. Observe the symmetric relation between this sequence (a(n)) and b(n) thanks to line plots of a(n)-n/2 and b(n)-n/2 in Links section.

LINKS

Altug Alkan, Table of n, a(n) for n = 1..65536

Altug Alkan, Line plot of a(n)-n/2 for n <= 2^17

Altug Alkan, Line plots of A004001(n)-n/2 and a(n)-n/2 for n <= 2^14

Altug Alkan, Line plots of a(n)-n/2 and b(n)-n/2 for n <= 2^11

FORMULA

a(n+1) - a(n) = 0 or 1 for all n >= 1.

MAPLE

b:= proc(n) option remember; `if`(n<3, 1,

      b(b(n-1)) +b(n-b(n-1)))

    end:

a:= proc(n) option remember; `if`(n<3, 1,

      a(b(n)) +a(n-b(n)))

    end:

seq(a(n), n=1..100); # after Alois P. Heinz at A317686

MATHEMATICA

t[1] = 1; t[2] = 1; t[n_] := t[n] = t[t[n-1]] + t[n - t[n-1]];

a[1] = a[2] = 1; a[n_] := a[n] = a[t[n]] + a[n - t[n]];

Array[a, 100] (* Jean-Fran├žois Alcover, Nov 01 2020 *)

PROG

(PARI) t=vector(99); t[1]=t[2]=1; for(n=3, #t, t[n] = t[t[n-1]]+t[n-t[n-1]]); a=vector(99); a[1]=a[2]=1; for(n=3, #a, a[n] = a[t[n]]+a[n-t[n]]); a

CROSSREFS

Cf. A004001, A317686.

Sequence in context: A027192 A194255 A194245 * A284007 A261133 A179211

Adjacent sequences:  A317645 A317646 A317647 * A317649 A317650 A317651

KEYWORD

nonn,easy

AUTHOR

Altug Alkan, Aug 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 06:18 EDT 2021. Contains 343636 sequences. (Running on oeis4.)