Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 15 2018 05:26:00
%S 1,4,12,2,32,16,80,80,5,192,320,60,448,1120,420,14,1024,3584,2240,224,
%T 2304,10752,10080,2016,42,5120,30720,40320,13440,840,11264,84480,
%U 147840,73920,9240,132,24576,225280,506880,354816,73920,3168
%N Triangle read by rows: T(n,k) is the number of preimages of the permutation 21345...n under West's stack-sorting map that have k+1 valleys (1 <= k <= floor((n-1)/2)).
%C If pi is any permutation of [n] with exactly 1 descent, then the number of preimages of pi under West's stack-sorting map that have k+1 valleys is at most T(n,k).
%H C. Defant, <a href="https://arxiv.org/abs/1511.05681">Preimages under the stack-sorting algorithm</a>, arXiv:1511.05681 [math.CO], 2015-2018.
%H C. Defant, <a href="https://doi.org/10.1007/s00373-016-1752-5">Preimages under the stack-sorting algorithm</a>, Graphs Combin., 33 (2017), 103-122.
%H C. Defant, <a href="https://arxiv.org/abs/1809.03123">Stack-sorting preimages of permutation classes</a>, arXiv:1809.03123 [math.CO], 2018.
%F T(n,k) = Sum_{i=1..n-2} Sum_{j=1..k} V(i,j) * V(n-1-i,m+1-j), where V(i,j) = 2^{i-2j+1} * (1/j) * binomial(i-1, 2j-2) * binomial(2j-2, j-1) are the numbers found in the triangle A091894.
%e Triangle begins:
%e 1;
%e 4;
%e 12, 2;
%e 32, 16;
%e 80, 80, 5;
%e 192, 320, 60;
%e 448, 1120, 420, 14;
%e ...
%e T(1,1) = 1 because the permutation 213 has one preimage under West's stack-sorting map (namely, 231), and this permutation has 2 valleys.
%t Flatten[Table[Table[Sum[Sum[(2^(i - 2 j + 1)) Binomial[i - 1, 2 j - 2]CatalanNumber[j - 1] (2^((n - 1 - i) - 2 (m + 1 - j) + 1)) Binomial[(n - 1 - i) - 1, 2 (m + 1 - j) - 2] CatalanNumber[(m + 1 - j) - 1], {j, 1, m}], {i, 1, n - 2}], {m, 1, Floor[(n - 1)/2]}], {n, 1, 10}]]
%Y Row sums give A002057.
%K easy,nonn,tabf
%O 3,2
%A _Colin Defant_, Sep 14 2018