login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.
0

%I #26 Sep 13 2018 04:59:03

%S 1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,2,1,1,2,1,1,0,3,0,1,1,3,2,1,0,4,0,

%T 1,1,1,4,3,1,1,0,5,0,3,1,1,5,4,3,1,1,0,6,0,6,0,1,1,6,5,6,3,1,0,7,0,10,

%U 0,1,1,1,7,6,10,6,1,1,0,8,0,15,0,4,1,1,8,7,15,10,4,1,1,0,9,0,21,0,10,0,1,1,9,8,21,15,10,4,1,0,10,0,28,0,20,0,1,1,1,10,9,28,21,20,10,1,1,0,11,0,36,0,35,0,5

%N Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.

%F T(n,k) = 0 if n is odd and k is even;

%F T(n,k) = binomial((n-1)/2-k,(k-1)/2) if n is odd and k is odd;

%F T(n,k) = binomial((n-2)/2-k,(k-1)/2) if n is even and k is odd;

%F T(n,k) = binomial((n-2)/2-k,(k-2)/2) if n is even and k is even.

%e For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1).

%e The first entries of the irregular triangle formed by the values of T(n,k) are:

%e 1;

%e 1;

%e 1;

%e 1, 1;

%e 1, 0;

%e 1, 1;

%e 1, 0, 1;

%e 1, 1, 1;

%e 1, 0, 2;

%e 1, 1, 2, 1;

%e 1, 0, 3, 0;

%e 1, 1, 3, 2;

%e 1, 0, 4, 0, 1;

%e 1, 1, 4, 3, 1;

%e 1, 0, 5, 0, 3;

%e 1, 1, 5, 4, 3, 1;

%e 1, 0, 6, 0, 6, 0;

%e 1, 1, 6, 5, 6, 3;

%e 1, 0, 7, 0, 10, 0, 1;

%e 1, 1, 7, 6, 10, 6, 1;

%e 1, 0, 8, 0, 15, 0, 4;

%e 1, 1, 8, 7, 15, 10, 4, 1;

%e 1, 0, 9, 0, 21, 0, 10, 0;

%e 1, 1, 9, 8, 21, 15, 10, 4;

%e 1, 0, 10, 0, 28, 0, 20, 0, 1;

%e 1, 1, 10, 9, 28, 21, 20, 10, 1;

%e 1, 0, 11, 0, 36, 0, 35, 0, 5;

%t T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]];

%t Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* _Jean-François Alcover_, Sep 13 2018, from PARI *)

%o (PARI) T(n,k)=if(n%2==1&&k%2==0, 0, binomial((n-1)\2-k, (k-1)\2)); \\ _Andrew Howroyd_, Sep 07 2018

%Y Row sums of the triangle equal A226916(n+4).

%K nonn,tabf

%O 3,18

%A _Christian Barrientos_ and _Sarah Minion_, Jul 29 2018