login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317475
Numbers k such that k^2 | A038199(k).
1
1, 16, 32, 64, 112, 128, 256, 395, 448, 512, 1024, 1093, 1168, 1368, 1472, 1792, 2013, 2048, 3279, 3344, 3511, 3968, 4096, 5472, 5696, 7168, 7651, 8192, 10533, 14209, 16384, 17488, 19674, 21672, 21888, 22953, 27552, 28672, 31599, 32768, 33883, 34905, 34976
OFFSET
1,2
COMMENTS
Serret proved in 1855 a generalization of Fermat's little theorem: for b >= 1, Sum_{d|k} mu(d)*b^(k/d) == 0 (mod k). This sequence includes numbers k such that k^2 divides the sum with base b=2.
Includes all the powers of 2 above 8.
An alternative generalization of Wieferich primes (A001220) which are the prime terms of this sequence.
Also numbers k such that k | A059966(k).
REFERENCES
Wacław Sierpiński, Elementary Theory of Numbers, Elsevier, North Holland, 1988, page 217.
LINKS
Joseph-Alfred Serret, Théorème de Fermat généralisé, Nouvelles Annales de Mathématiques, Vol. 14 (1855), pp. 261-262.
EXAMPLE
16 is in the sequence since Sum_{d|16} mu(d)*2^(16/d) = 65280 = 255 * 16^2.
MATHEMATICA
f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &]; Select[Range[1000], Divisible[f[#], #^2] &]
PROG
(PARI) isok(n) = frac(sumdiv(n, d, moebius(n/d)*(2^d-1))/n^2) == 0; \\ Michel Marcus, Jul 30 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 29 2018
STATUS
approved