login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317475 Numbers n such that n^2 | A038199(n). 1
1, 16, 32, 64, 112, 128, 256, 395, 448, 512, 1024, 1093, 1168, 1368, 1472, 1792, 2013, 2048, 3279, 3344, 3511, 3968, 4096, 5472, 5696, 7168, 7651, 8192, 10533, 14209, 16384, 17488, 19674, 21672, 21888, 22953, 27552, 28672, 31599, 32768, 33883, 34905, 34976 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Serret proved in 1855 a generalization of Fermat's little theorem: for b >= 1, Sum_{d|n} mu(d)*b^(n/d) == 0 (mod n). This sequence includes numbers n such that n^2 divides the sum with base b=2.

Includes all the powers of 2 above 8.

An alternative generalization of Wieferich primes (A001220) which are the prime terms of this sequence.

Also numbers n such that n | A059966(n).

REFERENCES

Wacław Sierpiński, Elementary Theory of Numbers, Elsevier, North Holland, 1988, page 217.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..250

Joseph-Alfred Serret, Théorème de Fermat généralisé, Nouvelles Annales de Mathématiques, Vol. 14 (1855), pp. 261-262.

EXAMPLE

16 is in the sequence since Sum_{d|16} mu(d)*2^(16/d) = 65280 = 255 * 16^2.

MATHEMATICA

f[n_] := DivisorSum[n, MoebiusMu[#] * 2^(n/#) &]; Select[Range[1000], Divisible[f[#], #^2] &]

PROG

(PARI) isok(n) = frac(sumdiv(n, d, moebius(n/d)*(2^d-1))/n^2) == 0; \\ Michel Marcus, Jul 30 2018

CROSSREFS

Cf. A000079, A001220, A038199, A059966, A077816, A182297.

Sequence in context: A076468 A246550 A197917 * A239751 A261782 A256818

Adjacent sequences:  A317472 A317473 A317474 * A317476 A317477 A317478

KEYWORD

nonn

AUTHOR

Amiram Eldar, Jul 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 04:47 EST 2020. Contains 332276 sequences. (Running on oeis4.)