login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] whose lengths of increasing runs are distinct prime numbers.
6

%I #11 Mar 29 2021 08:00:56

%S 1,0,1,1,0,19,0,41,110,70,13696,1,44796,155,411064,2122802,251746,

%T 1057634441,4404368,25043183,44848672,19725545894,106293316,

%U 307873058001,50194102,8305023165502,65808841818130,33715371370134,115625740201672616,78940089764191

%N Number of permutations of [n] whose lengths of increasing runs are distinct prime numbers.

%H Alois P. Heinz, <a href="/A317447/b317447.txt">Table of n, a(n) for n = 0..100</a>

%p g:= (n, s)-> `if`(n in s or not (n=0 or isprime(n)), 0, 1):

%p b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),

%p `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})

%p , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))

%p end:

%p a:= n-> b(n, 0$2, {}):

%p seq(a(n), n=0..40);

%t g[n_, s_] := If[MemberQ[s, n] || Not [n == 0 || PrimeQ[n]], 0, 1];

%t b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],

%t If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],

%t {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]];

%t a[n_] := b[n, 0, 0, {}];

%t a /@ Range[0, 40] (* _Jean-François Alcover_, Mar 29 2021, after _Alois P. Heinz_ *)

%o (Python)

%o from functools import lru_cache

%o from sympy import isprime

%o def g(n, s): return int((n == 0 or isprime(n)) and not n in s)

%o @lru_cache(maxsize=None)

%o def b(u, o, t, s):

%o if u + o == 0: return g(t, s)

%o c1 = sum(b(u-j, o+j-1, 1, tuple(sorted(s+(t,)))) for j in range(1, u+1)) if g(t, s) else 0

%o return c1 + sum(b(u+j-1, o-j, t+1, s) for j in range(1, o+1))

%o def a(n): return b(n, 0, 0, tuple())

%o print([a(n) for n in range(41)]) # _Michael S. Branicky_, Mar 29 2021 after _Alois P. Heinz_

%Y Cf. A000040, A317131, A317444, A317445, A317446, A317448.

%K nonn

%O 0,6

%A _Alois P. Heinz_, Jul 28 2018