login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 149836681069944461 + (n-1)*1723457117682300.
0

%I #9 Aug 06 2018 05:32:55

%S 149836681069944461,151560138187626761,153283595305309061,

%T 155007052422991361,156730509540673661,158453966658355961,

%U 160177423776038261,161900880893720561,163624338011402861,165347795129085161,167071252246767461,168794709364449761,170518166482132061

%N a(n) = 149836681069944461 + (n-1)*1723457117682300.

%C The terms for n = 1..26 are prime. As of Jul 25 2018, this is one of the longest known sequences of primes in arithmetic progression.

%H Jens Kruse Andersen, <a href="http://primerecords.dk/aprecords.htm#ap24">All known AP24 to AP26</a>.

%H B. Green and T. Tao, <a href="http://arxiv.org/abs/math.NT/0404188">The primes contain arbitrarily long arithmetic progressions</a>, Annals of Math. 167 (2008), 481-547.

%H PrimeGrid, <a href="http://www.primegrid.com/download/AP26.pdf">AP26 Search</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeArithmeticProgression.html">Prime Arithmetic Progression</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Primes_in_arithmetic_progression">Primes in arithmetic progression</a>.

%e a(26) = 149836681069944461 + 25*7725290*223092870 = 192923109012001961 is prime.

%p seq(149836681069944461+(n-1)*1723457117682300,n=1..25);

%t Table[149836681069944461 + (n - 1) 1723457117682300, {n, 1, 25}]

%o (GAP) List([1..25], n->149836681069944461+(n-1)*1723457117682300);

%Y Cf. A002120, A204189, A260751, A261140, A317163, A317164.

%K nonn,easy

%O 1,1

%A _Marco Ripà_, Jul 25 2018