Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 30 2020 18:51:12
%S 1,1,0,1,1,1,1,1,1,2,3,4,1,4,4,5,4,6,7,9,10,13,13,15,15,17,23,22,29,
%T 29,34,36,47,45,59,60,72,77,93,95,112,121,129,149,169,176,202,228,247,
%U 268,305,334,372,405,452,496,544,594,663,724,802
%N Number of normal integer partitions of n whose multiset of multiplicities is also normal.
%C A multiset is normal if it spans an initial interval of positive integers.
%H Chai Wah Wu, <a href="/A317088/b317088.txt">Table of n, a(n) for n = 0..192</a>
%e The a(18) = 7 integer partitions are (543321), (5432211), (4433211), (4432221), (44322111), (4333221), (43322211).
%t normalQ[m_]:=Union[m]==Range[Max[m]];
%t Table[Length[Select[IntegerPartitions[n],And[normalQ[#],normalQ[Length/@Split[#]]]&]],{n,30}]
%o (Python)
%o from sympy.utilities.iterables import partitions
%o from sympy import integer_nthroot
%o def A317088(n):
%o if n == 0:
%o return 1
%o c = 0
%o for d in partitions(n,k=integer_nthroot(2*n,2)[0]):
%o l = len(d)
%o if l > 0 and l == max(d):
%o v = set(d.values())
%o if len(v) == max(v):
%o c += 1
%o return c # _Chai Wah Wu_, Jun 23 2020
%Y Cf. A000009, A000041, A000837, A055932, A296150, A317081, A317082, A317086.
%K nonn
%O 0,10
%A _Gus Wiseman_, Jul 21 2018