Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Aug 15 2018 22:35:28
%S 4,341,473,4,4,133,497,4,4,15,9,4,4,143,35,4,4,51,57,4,4,77,253,4,4,
%T 65,9,4,4,115,155,4,4,187,35,4,4,9,247,4,4,287,2051,4,4,15,33,4,4,35,
%U 85,4,4,9,9,4,4,551,1711,4,4,713,21,4,4,55,77,4,4,35,35,4
%N a(n) is the smallest composite k such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).
%C According to the Agoh-Giuga conjecture, a(n) <> n+1.
%C a(n) = 4 if and only if n == {0, 1} (mod 4).
%H Chai Wah Wu, <a href="/A317058/b317058.txt">Table of n, a(n) for n = 1..9661</a> (n = 1..500 from Seiichi Manyama)
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Agoh%E2%80%93Giuga_conjecture">Agoh-Giuga conjecture</a>
%t a[n_] := Block[{k = 4}, While[PrimeQ[k] || Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != Mod[n, k], k++]; k]; Array[a, 72] (* _Giovanni Resta_, Jul 26 2018 *)
%o (PARI) a(n) = forcomposite(k=1,, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ _Michel Marcus_, Jul 26 2018
%o (Python)
%o from sympy import isprime
%o def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q
%o c = (-n) % q
%o for k in range(1,n+1):
%o c = (c+pow(k,p,q)) % q
%o return c
%o def A317058(n):
%o k = 2
%o while isprime(k) or g(n,k-1,k):
%o k += 1
%o return k # _Chai Wah Wu_, Jul 30 2018
%Y Cf. A000790, A133906, A133907, A317357, A317358.
%K nonn
%O 1,1
%A _Thomas Ordowski_, Jul 26 2018
%E More terms from _Giovanni Resta_, Jul 26 2018