login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
9

%I #43 Sep 11 2018 21:16:02

%S 0,1,2,1,3,2,4,2,2,3,5,3,3,4,6,1,4,4,5,7,2,5,5,6,3,8,2,3,6,6,7,3,4,9,

%T 3,2,4,7,7,8,4,5,10,4,3,5,8,8,4,9,5,6,11,5,4,6,9,9,5,10,6,7,12,2,6,5,

%U 7,10,10,6,11,7,8,13,3,7,6,8,11,11,2,7,12

%N Depth of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

%C If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).

%e e(21025) = o[o[o]][o] has depth 3 so a(21025) = 3.

%t nn=1000;

%t radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];

%t rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];

%t Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];

%t exp[n_]:=If[n===1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];

%t Table[Max@@Length/@Position[exp[n],_],{n,200}]

%Y Cf. A007916, A052409, A052410, A109082, A277576, A277996, A300626, A316112, A317056, A317658, A317765, A317994.

%K nonn

%O 1,3

%A _Gus Wiseman_, Aug 18 2018