login
A317036
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 14, 14, 8, 16, 28, 30, 28, 16, 32, 94, 82, 82, 94, 32, 64, 284, 280, 354, 280, 284, 64, 128, 752, 842, 1718, 1718, 842, 752, 128, 256, 2244, 2591, 7523, 11368, 7523, 2591, 2244, 256, 512, 6532, 8141, 33798, 66728, 66728, 33798, 8141, 6532, 512
OFFSET
1,2
COMMENTS
Table starts
...1....2.....4......8.......16........32..........64..........128
...2....4....14.....28.......94.......284.........752.........2244
...4...14....30.....82......280.......842........2591.........8141
...8...28....82....354.....1718......7523.......33798.......153703
..16...94...280...1718....11368.....66728......417156......2714271
..32..284...842...7523....66728....559097.....4939166.....46085330
..64..752..2591..33798...417156...4939166....64983838....900623946
.128.2244..8141.153703..2714271..46085330...900623946..19235095363
.256.6532.25387.700615.17610616.435634601.12923660734.426907974013
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-2) +6*a(n-3) -10*a(n-4) -8*a(n-5) for n>6
k=3: [order 15] for n>17
k=4: [order 65] for n>67
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..0..1..0. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..0..0..0. .1..0..0..1. .1..1..1..0. .0..0..0..0. .0..0..1..1
..1..0..0..0. .0..0..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1
..0..0..0..0. .0..0..0..1. .0..1..1..1. .0..0..0..1. .1..1..1..1
..0..0..1..1. .0..1..0..0. .1..1..0..0. .0..1..0..0. .1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A304341.
Sequence in context: A304347 A316218 A305642 * A305911 A317153 A316883
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 19 2018
STATUS
approved