login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Invertible primes p such that k*p - 1 and k*p + 1 is a twin prime pair; for k = 12.
0

%I #9 Nov 14 2018 12:11:11

%S 19,601,1601,16661,16981,19609,60689,66809,69001,69011,100169,119191,

%T 189901,196919,616961,1061689,1088089,1091119,1106069,1196089,1198069,

%U 1611601,1666019,1688969,1800119,1861889,1891619,1891661,1910669,1996681,6060091,6160601,6196909

%N Invertible primes p such that k*p - 1 and k*p + 1 is a twin prime pair; for k = 12.

%C Intersection of A048890 (invertible primes) and A138242.

%C k = 12 is the smallest integer to produce such sequence.

%e a(2) = 601 is an invertible prime; 12*601 - 1 = 7211; 12*601 + 1 = 7213; 7211 and 7213 form a twin prime pair.

%e a(4) = 16661 is an invertible prime; 12*16661 - 1 = 199931; 12*16661 + 1 = 199933; 199931 and 199933 form a twin prime pair.

%t k = 12; Select[lst = {};

%t fQ[n_] := Block[{allset = {0, 1, 6, 8, 9}, id = IntegerDigits@n}, rid = Reverse[id /. {6 -> 9, 9 -> 6}];Union@Join[id, allset] == allset && PrimeQ@FromDigits@rid && rid != id];Do[If[PrimeQ@n && fQ@n, AppendTo[lst, n]], {n, 12000000}]; lst,

%t PrimeQ[k# + 1] && PrimeQ[k# - 1] &]

%Y Cf. A048890, A001359, A006512, A124519, A138242.

%K nonn,base

%O 1,1

%A _K. D. Bajpai_, Jul 19 2018