%I #17 Jan 27 2021 10:14:43
%S 0,1,10,1316,840124672,6110726696100443604557936,
%T 439451426203104201222708341688051362423089952907263634936946272224
%N Total number of elements in all permutations of [n], [n+1], ... that result in a binary search tree of height n.
%C Empty external nodes are counted in determining the height of a search tree.
%H Alois P. Heinz, <a href="/A317012/b317012.txt">Table of n, a(n) for n = 0..9</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F a(n) = Sum_{k=n..2^n-1} k * A195581(k,n) = Sum_{k=n..2^n-1} k * A244108(k,n).
%e a(2) = 10 = 2 + 3 + 3 + 2:
%e .
%e 2 2 1
%e / \ / \ / \
%e 1 o 1 3 o 2
%e / \ ( ) ( ) / \
%e o o o o o o o o
%e (2,1) (2,1,3) (2,3,1) (1,2)
%e .
%p b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1),
%p add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1))
%p end:
%p T:= (n, k)-> b(n, k)-b(n, k-1):
%p a:= k-> add(T(n, k)*n, n=k..2^k-1):
%p seq(a(n), n=0..6);
%t b[n_, k_] := b[n, k] = If[n < 2, If[k < n, 0, 1],
%t Sum[Binomial[n-1, r] b[r, k-1] b[n-1-r, k-1], {r, 0, n-1}]];
%t T[n_, k_] := b[n, k] - b[n, k-1];
%t a[k_] := Sum[T[n, k] n, {n, k, 2^k - 1}];
%t a /@ Range[0, 6] (* _Jean-François Alcover_, Jan 27 2021, after _Alois P. Heinz_ *)
%Y Cf. A195581, A227822, A244108, A335922.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jul 18 2018