Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 19 2018 11:48:40
%S 1,-1,-1,1,2,0,-4,-4,5,15,4,-34,-49,35,174,106,-363,-729,173,2311,
%T 2266,-4048,-11573,-2001,32110,45110,-41692,-187550,-103297,445119,
%U 864056,-301392,-3033429,-2820827,5900903,16076357,1596760,-48162378,-64931570,69966798,291036757,143307879,-737616558,-1374497088,610620123,5114691723,4475615447,-10618782829
%N G.f.: A(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(3*(n+1)).
%C Note that: binomial(2*(n+1), n)/(n+1) = A000108(n+1) for n >= 0, where C(x) = Sum_{n>=0} A000108(n)*x^n satisfies C(x) = 1 + x*C(x)^2.
%C Compare the g.f. to:
%C (C1) M(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(n+1) where M(x) = 1 + M(x) + M(x)^2 is the g.f. of Motzkin numbers (A001006).
%C (C2) 1 = Sum_{n>=0} binomial(m*(n+1), n)/(n+1) * x^n / (1+x)^(m*(n+1)) holds for fixed m.
%C (C3) If S(x,p,q) = Sum_{n>=0} binomial(p*(n+1),n)/(n+1) * x^n/(1+x)^(q*(n+1)), then Series_Reversion ( x*S(x,p,q) ) = x*S(x,q,p) holds for fixed p and q.
%H Paul D. Hanna, <a href="/A316987/b316987.txt">Table of n, a(n) for n = 0..500</a>
%F G.f. A(x) satisfies:
%F (1) A(x) = Sum_{n>=0} binomial(2*(n+1), n)/(n+1) * x^n / (1+x)^(3*(n+1)).
%F (2) A(x) = (1 + x^2*A(x)^2) / (1 + x + 3*x^2 + x^3).
%F (3) A(x) = (1 + x + 3*x^2 + x^3 - (1+x)*sqrt(1 + 2*x^2 + 4*x^3 + x^4))/(2*x^2).
%e G.f.: A(x) = 1 - x - x^2 + x^3 + 2*x^4 - 4*x^6 - 4*x^7 + 5*x^8 + 15*x^9 + 4*x^10 - 34*x^11 - 49*x^12 + 35*x^13 + 174*x^14 + 106*x^15 - 363*x^16 + ...
%e such that
%e A(x) = 1/(1+x)^3 + 2*x/(1+x)^6 + 5*x^2/(1+x)^9 + 14*x^3/(1+x)^12 + 42*x^4/(1+x)^15 + 132*x^5/(1+x)^18 + ... + A000108(n+1)*x^n/(1+x)^(3*(n+1)) + ...
%e RELATED SERIES.
%e Series_Reversion( x*A(x) ) = x + x^2 + 3*x^3 + 9*x^4 + 30*x^5 + 105*x^6 + 382*x^7 + 1429*x^8 + 5463*x^9 + 21248*x^10 + ... + A316371(n)*x^n + ...
%e which equals the sum:
%e Sum_{n>=0} binomial(3*(n+1), n)/(n+1) * x^(n+1)/(1+x)^(2*(n+1)).
%o (PARI) {a(n) = my(A = sum(m=0, n, binomial(2*(m+1), m)/(m+1) * x^m / (1+x +x*O(x^n))^(3*(m+1)))); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A316371.
%K sign
%O 0,5
%A _Paul D. Hanna_, Jul 18 2018