login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316975
a(n) is the minimum number of occurrences of the same value (r0-r1+n) mod n for all pairs (r0,r1) of quadratic residues mod n.
2
1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 4, 1, 1, 4, 2, 5, 1, 2, 6, 6, 1, 2, 6, 2, 2, 7, 2, 8, 1, 3, 8, 2, 1, 9, 10, 3, 1, 10, 4, 11, 3, 1, 12, 12, 1, 8, 4, 4, 3, 13, 4, 3, 2, 5, 14, 15, 1, 15, 16, 2, 1, 3, 6, 17, 4, 6, 4, 18, 1, 18, 18, 2, 5, 6, 6, 20, 1, 4, 20
OFFSET
1,2
COMMENTS
Multiplicative by the Chinese remainder theorem since if gcd(m,n) = 1 then r is a quadratic residue mod m*n iff it is a quadratic residue mod m and a quadratic residue mod n. - Andrew Howroyd, Aug 07 2018
LINKS
EXAMPLE
The quadratic residues mod 10 are 0, 1, 4, 5, 6 and 9. For each pair (r0,r1) of these quadratic residues, we compute (r0-r1+10) mod 10, leading to:
0 1 4 5 6 9
+------------
0 | 0 9 6 5 4 1
1 | 1 0 7 6 5 2
4 | 4 3 0 9 8 5
5 | 5 4 1 0 9 6
6 | 6 5 2 1 0 7
9 | 9 8 5 4 3 0
The minimum number of occurrences of the same value in the above table is 2 (for 2, 3, 7 and 8). Therefore a(10) = 2.
MATHEMATICA
Table[Min@ Tally[#][[All, -1]] &@ Flatten[Mod[#, n] & /@ Outer[Subtract, #, #]] &@ Union@ PowerMod[Range@ n, 2, n], {n, 82}] (* Michael De Vlieger, Jul 20 2018 *)
PROG
(PARI) a(n)={my(r=Set(vector(n, i, i^2%n))); my(v=vector(n)); for(i=1, #r, for(j=1, #r, v[(r[i]-r[j])%n + 1]++)); vecmin(select(t->t>0, v))} \\ Andrew Howroyd, Aug 07 2018
CROSSREFS
Cf. A096008.
Sequence in context: A165190 A025890 A334440 * A043277 A379018 A265991
KEYWORD
nonn,mult
AUTHOR
Arnauld Chevallier, Jul 17 2018
STATUS
approved