Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 13 2021 05:37:32
%S 1,2,2,3,4,3,5,7,7,5,8,12,14,12,8,13,20,26,26,20,13,21,33,46,52,46,33,
%T 21,34,54,79,98,98,79,54,34,55,88,133,177,196,177,133,88,55,89,143,
%U 221,310,373,373,310,221,143,89,144,232,364,531,683,746,683,531,364,232,144,233,376,596,895,1214,1429
%N Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).
%e Triangle begins:
%e 1;
%e 2, 2;
%e 3, 4, 3;
%e 5, 7, 7, 5;
%e 8, 12, 14, 12, 8;
%e 13, 20, 26, 26, 20, 13;
%e 21, 33, 46, 52, 46, 33, 21;
%e 34, 54, 79, 98, 98, 79, 54, 34;
%e 55, 88, 133, 177, 196, 177, 133, 88, 55;
%e ...
%p f:= proc(n,k) option remember;
%p if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi
%p end proc:
%p for n from 0 to 10 do
%p seq(f(n,k),k=0..n)
%p od; # _Robert Israel_, Sep 20 2018
%t t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten
%Y Cf. A316528 (row sums).
%Y Columns k=0..2: A000045, A000071, A001924.
%Y Other Fibonacci borders: A074829, A108617, A316938.
%K nonn,tabl
%O 0,2
%A _Vincenzo Librandi_, Jul 28 2018
%E Incorrect g.f. removed by _Georg Fischer_, Feb 18 2020