login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...
29

%I #43 Mar 01 2022 05:33:13

%S 0,1,24,27,73,78,147,154,246,255,370,381,519,532,693,708,892,909,1116,

%T 1135,1365,1386,1639,1662,1938,1963,2262,2289,2611,2640,2985,3016,

%U 3384,3417,3808,3843,4257,4294,4731,4770,5230,5271,5754,5797,6303,6348,6877,6924,7476,7525,8100,8151,8749,8802

%N Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

%C Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 27.

%C Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.

%C A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.

%C Partial sums of A317323. - _Omar E. Pol_, Jul 28 2018

%H Colin Barker, <a href="/A316725/b316725.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F From _Colin Barker_, Jul 11 2018: (Start)

%F G.f.: x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2).

%F a(n) = n*(25*n + 46)/8 for n even.

%F a(n) = (25*n - 21)*(n + 1)/8 for n odd.

%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.

%F (End)

%F Sum_{n>=1} 1/a(n) = 2*(25 + 23*Pi*cot(2*Pi/25))/529. - _Amiram Eldar_, Mar 01 2022

%p a:= n-> (m-> m*(25*m-23)/2)(-ceil(n/2)*(-1)^n):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jul 11 2018

%t CoefficientList[Series[-x (x^2 + 23x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 53}], x] (* or *)

%t LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 24, 27, 73, 78, 147}, 53] (* _Robert G. Wilson v_, Jul 28 2018; corrected by _Georg Fischer_, Apr 03 2019 *)

%t nn=30; Sort[Table[n (25 n - 23) / 2, {n, -nn, nn}]] (* _Vincenzo Librandi_, Jul 29 2018 *)

%o (PARI) concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ _Colin Barker_, Jul 11 2018

%o (GAP) a:=[0,1,24,27,73];; for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # _Muniru A Asiru_, Jul 16 2018

%Y Cf. A255186; A317323.

%Y Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), this sequence (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

%K nonn,easy

%O 0,3

%A _Omar E. Pol_, Jul 11 2018