login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized 26-gonal (or icosihexagonal) numbers: m*(12*m - 11) with m = 0, +1, -1, +2, -2, +3, -3, ...
29

%I #38 Sep 25 2024 10:28:46

%S 0,1,23,26,70,75,141,148,236,245,355,366,498,511,665,680,856,873,1071,

%T 1090,1310,1331,1573,1596,1860,1885,2171,2198,2506,2535,2865,2896,

%U 3248,3281,3655,3690,4086,4123,4541,4580,5020,5061,5523,5566,6050,6095,6601,6648,7176,7225,7775

%N Generalized 26-gonal (or icosihexagonal) numbers: m*(12*m - 11) with m = 0, +1, -1, +2, -2, +3, -3, ...

%C 48*a(n) + 121 is a square. - _Bruno Berselli_, Jul 11 2018

%C Partial sums of A317322. - _Omar E. Pol_, Jul 28 2018

%H Colin Barker, <a href="/A316724/b316724.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F From _Bruno Berselli_, Jul 11 2018: (Start)

%F O.g.f.: x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3).

%F a(n) = a(-1-n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).

%F a(n) = (12*n*(n + 1) + 5*(2*n + 1)*(-1)^n - 5)/4. Therefore:

%F a(n) = n*(6*n + 11)/2 for n even; otherwise, a(n) = (n + 1)*(6*n - 5)/2.

%F (2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(12*n^2 - 11) = 0. (End)

%F From _Amiram Eldar_, Mar 01 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 12/121 + (sqrt(3)+2)*Pi/11.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(3)*log(sqrt(3)+2) + 6*log(2) + 3*log(3))/11 - 12/121. (End)

%F E.g.f.: (1/4)*(5*(1 - 2*x)*exp(-x) + (-5 + 24*x + 12*x^2)*exp(x)). - _G. C. Greubel_, Sep 24 2024

%t Table[(12 n (n + 1) + 5 (2 n + 1) (-1)^n - 5)/4, {n, 0, 60}] (* _Bruno Berselli_, Jul 11 2018 *)

%t CoefficientList[ Series[-x (x^2 + 22x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 60}], x] (* or *)

%t LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 23, 26, 70}, 60] (* _Robert G. Wilson v_, Jul 28 2018 *)

%t nn=30; Sort[Table[n (12 n - 11), {n, -nn, nn}]] (* _Vincenzo Librandi_, Jul 29 2018 *)

%o (PARI) concat(0, Vec(x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^60))) \\ _Colin Barker_, Jul 12 2018

%o (Magma)

%o [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)/4: n in [0..60]]; // _G. C. Greubel_, Sep 24 2024

%o (SageMath)

%o [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)//4 for n in range(61)] # _G. C. Greubel_, Sep 24 2024

%Y Cf. A255185, A317322.

%Y Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), this sequence (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

%K nonn,easy

%O 0,3

%A _Omar E. Pol_, Jul 11 2018