login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bisection of the odd-indexed Pell numbers A001853: part 2.
1

%I #10 Dec 11 2019 06:46:17

%S 5,169,5741,195025,6625109,225058681,7645370045,259717522849,

%T 8822750406821,299713796309065,10181446324101389,345869461223138161,

%U 11749380235262596085,399133058537705128729,13558774610046711780701,460599203683050495415105,15646814150613670132332869,531531081917181734003902441,18056409971033565286000350125

%N Bisection of the odd-indexed Pell numbers A001853: part 2.

%C The other part of this bisection is given in A316708.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (34,-1).

%F a(n) = Pell(4*n+3) = A000129(4*n+3) = A001653(2*(n+1)), n >= 0.

%F a(n) = 34*a(n-1) - a(n-2), with a(-1) = and a(0) = 5.

%F a(n) = 5*S(n, 34) - S(n-1, 34), where the Chebyshev polynomial S(n, 34) = A029547(n), n >= 0, with S(-1, x) = 0.

%F G.f.: (5 - x)/(1- 34*x + x^2).

%o (PARI) x='x+O('x^99); Vec((5-x)/(1-34*x+x^2)) \\ _Altug Alkan_, Jul 11 2018

%Y Cf. A000129, A001653, A029547, A316708.

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Jul 11 2018