Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jul 11 2018 06:42:11
%S 907,5611,4318,26914,12238,76414,34738,138913,555613,2222413,13890013,
%T 55560013,222240013,1389000013,5556000013,22224000013,138900000013,
%U 555600000013,2222400000013,13890000000013,55560000000013,222240000000013,1389000000000013,5556000000000013,22224000000000013
%N The integer 907 and its infinite growing pattern (when iterating the rule explained in A316650 and hereunder, in the Comment section).
%C It is conjectured, when iterating the idea explained in A316650 ("Result when n is divided by the sum of its digits and the resulting integer is concatenated to the remainder"), that all integers will end either on a fixed point (the first ones are listed in A052224) or grow forever (like 907 or 1358).
%e 907/16 gives 56 with remainder 11;
%e 5611/13 gives 431 with remainder 8;
%e 4318/16 gives 269 with remainder 14;
%e 26914/22 gives 122 with remainder 38;
%e . . .
%e Now from 2222413 on, starts a devilish 0-inflation "from the middle" in a ternary cycle:
%e 2222413
%e 13890013
%e 55560013
%e 222240013
%e 1389000013
%e 5556000013
%e 22224000013
%e 138900000013
%e 555600000013
%e 2222400000013
%e 13890000000013
%e 55560000000013
%e 222240000000013
%e 1389000000000013
%e 5556000000000013
%e 22224000000000013
%e 138900000000000013
%e 555600000000000013
%e 2222400000000000013
%e . . .
%e We have:
%e 1389(k zeros)13
%e 5556(k zeros)13
%e 22224(k zeros)13
%e then:
%e 1389(k+2 zeros)13
%e 5556(k+2 zeros)13
%e 22224(k+2 zeros)13
%e then:
%e 1389(k+4 zeros)13
%e 5556(k+4 zeros)13
%e 22224(k+4 zeros)13
%e Etc.
%t NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 907, 24] (* _Michael De Vlieger_, Jul 10 2018 *)
%Y Cf. A316650 (where the rule is explained) and A316680 (for the number 1358 that generates a similar pattern).
%K base,nonn
%O 1,1
%A _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 10 2018