login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316612 Number of nX5 0..1 arrays with every element unequal to 0, 1, 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero. 1
8, 53, 63, 199, 649, 1749, 4719, 13770, 38535, 106694, 302759, 853104, 2385813, 6717043, 18917295, 53110690, 149304292, 420051407, 1180658209, 3318836197, 9332768412, 26238657260, 73763895813, 207396353458, 583103500176 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 5 of A316615.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 2*a(n-1) +10*a(n-3) -6*a(n-4) -4*a(n-5) -13*a(n-6) -14*a(n-7) -27*a(n-8) -13*a(n-9) +38*a(n-10) +45*a(n-11) +16*a(n-12) +69*a(n-13) +95*a(n-14) +29*a(n-15) -73*a(n-16) -2*a(n-17) +66*a(n-18) -94*a(n-19) -279*a(n-20) -62*a(n-21) -179*a(n-22) -288*a(n-23) -214*a(n-24) +234*a(n-25) +437*a(n-26) +118*a(n-27) -213*a(n-28) +249*a(n-29) +355*a(n-30) +133*a(n-31) -60*a(n-32) -227*a(n-33) -5*a(n-34) +52*a(n-35) +16*a(n-36) +8*a(n-37) -8*a(n-38) -4*a(n-39) -4*a(n-40) for n>51

EXAMPLE

Some solutions for n=5

..0..0..0..1..1. .0..1..1..1..0. .0..0..0..0..0. .0..1..1..1..1

..0..0..0..0..1. .1..1..1..1..1. .0..0..0..0..0. .1..1..1..1..1

..0..0..0..0..0. .1..1..1..1..1. .0..0..0..1..0. .1..1..1..1..0

..0..0..0..0..0. .1..1..1..1..1. .0..0..0..0..0. .1..1..1..1..1

..0..0..0..1..0. .1..1..0..1..1. .0..0..0..0..0. .1..0..1..1..1

CROSSREFS

Cf. A316615.

Sequence in context: A303966 A304928 A305344 * A304666 A306169 A316424

Adjacent sequences:  A316609 A316610 A316611 * A316613 A316614 A316615

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jul 08 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 23:51 EST 2022. Contains 350410 sequences. (Running on oeis4.)