login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the sixth smallest known Salem number.
5

%I #10 Jul 09 2018 04:00:29

%S 1,2,1,9,7,2,0,8,5,9,0,4,0,3,1,1,8,4,4,1,6,9,6,0,6,7,6,0,4,1,4,6,7,7,

%T 9,4,4,3,9,0,4,1,5,5,0,5,5,4,1,5,6,9,6,7,8,2,8,7,9,7,4,4,1,7,8,7,3,3,

%U 8,4,6,4,5,9,9,0,8,3,9,0,6,5,8,3,5,5,3,9,3,2,0,7,8,5,1,6,2,5,9,5,7,8

%N Decimal expansion of the sixth smallest known Salem number.

%H M. J. Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/SalemConstants.html">Salem Constants.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Salem_number">Salem number</a>

%F Equals root of p = 1 - x - x^8 + x^9 - x^10 - x^17 + x^18 with largest absolute value.

%e 1.219720859040311844169606760414677944390415505541569678287974417873...

%t c1 = {1, -1, 0, 0, 0, 0, 0, 0, -1, 1};

%t c2 = Join[c1, Reverse[Most[c1]]];

%t p = (x^Range[0, Length[c2] - 1]).c2;

%t sigma6 = Root[p, x, 2];

%t RealDigits[sigma6, 10, 102][[1]]

%Y Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3 ), A306079 (sigma4), A316605 (sigma5), A316607 (sigma7), A316608 (sigma8), A316609 (sigma9), A316610 (sigma10).

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Jul 08 2018