login
Decimal expansion of the fifth smallest known Salem number.
5

%I #7 Jul 08 2018 21:30:08

%S 1,2,1,6,3,9,1,6,6,1,1,3,8,2,6,5,0,9,1,6,2,6,8,0,6,3,1,1,1,9,9,4,6,3,

%T 3,2,7,7,2,2,2,5,3,6,0,6,5,7,0,5,7,0,7,5,7,5,6,0,4,2,7,0,6,5,8,3,8,3,

%U 1,2,1,2,9,4,6,1,8,4,9,5,9,4,4,2,6,3,7,9,6,6,6,7,0,9,5,4,3,9,5,4,2,8

%N Decimal expansion of the fifth smallest known Salem number.

%H M. J. Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/SalemConstants.html">Salem Constants.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Salem_number">Salem number</a>

%F p = 1 - x^4 - x^5 - x^6 + x^10.

%e 1.21639166113826509162680631119946332772225360657057075756042706583831...

%t c1 = {1, 0, 0, 0, -1, -1};

%t c2 = Join[c1, Reverse[Most[c1]]];

%t p = (x^Range[0, Length[c2] - 1]).c2;

%t sigma5 = Root[p, x, 2];

%t RealDigits[sigma5, 10, 102][[1]]

%Y Cf. A073011 (sigma1), A219300 (sigma2), A306078 (sigma3), A306079 (sigma4), A316606 (sigma6), A316607 (sigma7), A316608 (sigma8), A316609 (sigma9), A316610 (sigma10).

%K nonn,cons

%O 1,2

%A _Jean-François Alcover_, Jul 08 2018