login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) equals the coefficient of x^n in Sum_{m>=0} (x^m + 2 + 1/x^m)^m for n >= 1.
8

%I #10 Jul 10 2018 07:57:00

%S 1,4,15,57,210,798,3003,11468,43759,168080,646646,2496647,9657700,

%T 37444162,145422720,565730729,2203961430,8597528644,33578000610,

%U 131282534380,513791608421,2012616897500,7890371113950,30957701501466,121548660036301,477551187602112,1877405874750672,7384942679432199,29065024282889672,114449595182606502,450883717216034179,1777090076536979756,7007092303604342400

%N a(n) equals the coefficient of x^n in Sum_{m>=0} (x^m + 2 + 1/x^m)^m for n >= 1.

%C The coefficient of 1/x^n in Sum_{m>=0} (x^m + 2 + 1/x^m)^m equals a(n) for n > 0, while the constant term in the sum increases without limit.

%C a(n) = Sum_{k=0..n-1} A316590(n,k) * 2^k for n >= 1.

%C a(n) = A304638(4*n) for n >= 1, where A304638(n) = [x^n] Sum_{m>=0} (x^m + 1/x^m)^m.

%H Paul D. Hanna, <a href="/A316592/b316592.txt">Table of n, a(n) for n = 1..300</a>

%F a(n) ~ 4^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Jul 10 2018

%e G.f.: A(x) = x + 4*x^2 + 15*x^3 + 57*x^4 + 210*x^5 + 798*x^6 + 3003*x^7 + 11468*x^8 + 43759*x^9 + 168080*x^10 + 646646*x^11 + 2496647*x^12 + ...

%e such that Sum_{m>=0} (x^m + 2 + 1/x^m)^m = A(x) + A(1/x) + (infinity)*x^0.

%o (PARI) {a(n) = polcoeff( sum(m=1,n, (x^-m + 2 + x^m)^m +x*O(x^n)), n,x)}

%o for(n=1,40, print1(a(n),", "))

%Y Cf. A304638, A316590, A316591, A316593, A316594, A316595.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jul 08 2018