login
Number of nX4 0..1 arrays with every element unequal to 0, 1, 3, 4, 7 or 8 king-move adjacent elements, with upper left element zero.
1

%I #4 Jul 06 2018 12:32:38

%S 5,17,17,42,89,187,430,1046,2407,5706,13873,33875,82077,200313,492334,

%T 1210530,2974134,7322441,18060615,44550324,109896337,271259825,

%U 669857474,1654265900,4085631507,10092345604,24933058364,61598731632,152189008179

%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 3, 4, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Column 4 of A316552.

%H R. H. Hardin, <a href="/A316548/b316548.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) -8*a(n-2) +7*a(n-3) -3*a(n-4) -23*a(n-5) +43*a(n-6) -24*a(n-7) -4*a(n-8) +34*a(n-9) -62*a(n-10) +199*a(n-11) -107*a(n-12) -21*a(n-13) +164*a(n-14) -637*a(n-15) +244*a(n-16) -542*a(n-17) -238*a(n-18) +438*a(n-19) -167*a(n-20) +2019*a(n-21) -63*a(n-22) +1299*a(n-23) +485*a(n-24) -1233*a(n-25) +141*a(n-26) -2424*a(n-27) -1184*a(n-28) -1165*a(n-29) -738*a(n-30) +561*a(n-31) +473*a(n-32) +1408*a(n-33) +1324*a(n-34) +436*a(n-35) -20*a(n-36) -116*a(n-37) -295*a(n-38) -201*a(n-39) -152*a(n-40) -122*a(n-41) -4*a(n-42) +36*a(n-43) +20*a(n-44) +4*a(n-45) for n>48

%e Some solutions for n=5

%e ..0..1..1..1. .0..0..0..0. .0..1..1..0. .0..0..0..0. .0..1..1..0

%e ..1..1..1..1. .0..1..0..0. .1..1..1..1. .0..1..0..0. .1..1..1..1

%e ..1..1..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0. .1..1..1..1

%e ..1..1..1..1. .1..1..1..0. .1..1..1..1. .0..0..0..0. .1..1..1..1

%e ..0..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..0. .0..1..1..0

%Y Cf. A316552.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 06 2018