login
Number of domino tilings (or dimer coverings) of a 2n X 2n square not counting reflections and rotations.
0

%I #24 Jul 17 2018 11:19:12

%S 1,1,9,930,1629189,32324350352,6632560613086062,

%T 14025276099356126574624,305611096281378760240051639364,

%U 68617947901923542714137396006469280000,158748001407029479280360099562172057138013219144,3784212561528950376893775523091796640110288722110632534528

%N Number of domino tilings (or dimer coverings) of a 2n X 2n square not counting reflections and rotations.

%C This is the sequence A004003 after removing rotations and reflections. The corresponding terms of A004003 are: 1, 2, 36, 6728, ... .

%D References cited in A004003.

%H S. D. Lord, <a href="http://stevelord.net/tile8.f">GFortran program computes up to 2n=8</a>.

%H S. D. Lord, <a href="http://stevelord.net/tile10.f">GFortran program computes up to 2n=10</a>.

%Y Cf. A004003.

%K nonn

%O 0,3

%A _Steven Lord_, Jul 06 2018

%E a(6)-a(11) from _Andrew Howroyd_, Jul 17 2018