

A316491


Number of ways to represent 8*n + 4 as the sum of four distinct odd squares.


1



0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 1, 2, 1, 0, 2, 1, 1, 2, 3, 0, 2, 2, 0, 3, 2, 2, 3, 1, 2, 2, 2, 3, 3, 4, 0, 4, 3, 0, 6, 3, 3, 4, 3, 1, 4, 4, 3, 4, 4, 2, 6, 4, 3, 6, 3, 3, 6, 4, 3, 7, 5, 4, 5, 6, 1, 6, 6, 2, 10, 4, 5, 7, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,20


COMMENTS

Every odd square is a number of the form 8*k + 1, so every sum of four odd squares is a number of the form 8*k + 4.
A316489 lists all positive numbers of the form 8*k + 4 that cannot be expressed as the sum of four distinct odd squares; for each such number, a(k)=0.
A316834 lists all numbers that can be expressed in only one way as the sum of four distinct odd squares; each such number is of the form 8*k + 4, and for each such number, a(k)=1.


LINKS

Robert Israel, Table of n, a(n) for n = 0..10000


EXAMPLE

n=1: 8*1 + 4 = 12 cannot be expressed as the sum of four distinct odd squares, so a(1)=0.
n=10: 8*10 + 4 = 84 can be expressed as the sum of four distinct odd squares in only 1 way (84 = 1^2 + 3^2 + 5^2 + 7^2), so a(10)=1.
n=19: 8*19 + 4 = 156 can be expressed as the sum of four distinct odd squares in exactly 2 ways (156 = 1^2 + 3^2 + 5^2 + 11^2 = 1^2 + 5^2 + 7^2 + 9^2), so a(19)=2.


MAPLE

b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(min(i, t)<1, 0, b(n, i2, t)+
`if`(i^2>n, 0, b(ni^2, i2, t1))))
end:
a:= n> (m> b(m, (r> r+1irem(r, 2))(isqrt(m)), 4))(8*n+4):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 05 2018


MATHEMATICA

a[n_] := Count[ IntegerPartitions[8 n + 4, {4}, Range[1, Sqrt[8 n + 4], 2]^2], w_ /; Max@Differences@w < 0]; Array[a, 87, 0] (* Giovanni Resta, Aug 12 2018 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0],
If[Min[i, t] < 1, 0, b[n, i2, t] +
If[i^2 > n, 0, b[ni^2, i2, t1]]]];
a[n_] := Function[m, b[m, Function[r, r+1Mod[r, 2]][Floor@Sqrt[m]], 4]][8n+4];
a /@ Range[0, 100] (* JeanFrançois Alcover, May 30 2021, after Alois P. Heinz *)


CROSSREFS

Cf. A316834, A316489, A316490.
Sequence in context: A265859 A271420 A099313 * A097468 A339975 A283144
Adjacent sequences: A316488 A316489 A316490 * A316492 A316493 A316494


KEYWORD

nonn


AUTHOR

Jon E. Schoenfield, Jul 29 2018


STATUS

approved



