login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse permutation to A316385.
2

%I #19 Apr 21 2024 22:26:16

%S 1,3,2,5,7,6,4,9,11,13,15,10,14,12,8,17,19,21,23,25,27,29,31,18,22,26,

%T 30,20,28,24,16,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,34,38,

%U 42,46,50,54,58,62,36,44,52,60,40,56,48,32,65,67,69,71

%N Inverse permutation to A316385.

%H Rémy Sigrist, <a href="/A316472/b316472.txt">Table of n, a(n) for n = 1..8191</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = (2*b(n) + 1)*2^(L(n) - L(b(n)) - 1) where b(n) = A053645(A153142(n)) and where L(n) = A000523(n) for n > 0 with L(0) = -1. - _Mikhail Kurkov_, Sep 09 2023 [verification needed]

%e A316385(42) = 50 hence a(50) = 42.

%o (PARI) b1(n) = my(b=binary(n)); fromdigits(concat(b[1], Vecrev(vector(#b-1, k, b[k+1]))), 2); \\ A059893

%o b2(n) = if(n < 2, n, if((n + 1) == 2^logint(n + 1, 2), (n + 1) / 2, n + 1)) \\ A153152

%o a(n) = my(A = 2^logint(n, 2), B = b1(b2(b1(n))) - A); (2 * B + 1) * A / 2 ^ (if(B == 0, -1, logint(B, 2)) + 1) \\ _Mikhail Kurkov_, Sep 09 2023 [verification needed]

%Y Cf. A000523, A053645, A059893, A153142, A316385.

%K nonn,base

%O 1,2

%A _Rémy Sigrist_, Jul 04 2018