login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of locally disjoint rooted identity trees with n nodes, meaning no branch overlaps any other branch of the same root.
21

%I #6 Jul 05 2018 02:30:18

%S 1,1,1,2,3,6,11,21,43,89,185,391,840,1822,3975,8727,19280,42841,95661,

%T 214490

%N Number of locally disjoint rooted identity trees with n nodes, meaning no branch overlaps any other branch of the same root.

%H Gus Wiseman, <a href="/A316471/a316471.png">The a(8) = 21 locally disjoint rooted identity trees.</a>

%e The a(7) = 11 locally disjoint rooted identity trees:

%e ((((((o))))))

%e ((((o(o)))))

%e (((o((o)))))

%e ((o(((o)))))

%e ((o(o(o))))

%e (((o)((o))))

%e (o((((o)))))

%e (o((o(o))))

%e (o(o((o))))

%e ((o)(((o))))

%e (o(o)((o)))

%t strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Select[Tuples[#,2],UnsameQ@@#&&(Intersection@@#=!={})&]=={}&]];

%t Table[Length[strut[n]],{n,20}]

%Y Cf. A000081, A004111, A276625, A277098, A302696, A303362, A304713, A316467, A316471, A316473, A316474, A316494.

%K nonn,more

%O 1,4

%A _Gus Wiseman_, Jul 04 2018