login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum divided by GCD of the integer partition with Heinz number n > 1.
1

%I #13 Sep 15 2018 15:54:57

%S 1,1,2,1,3,1,3,2,4,1,4,1,5,5,4,1,5,1,5,3,6,1,5,2,7,3,6,1,6,1,5,7,8,7,

%T 6,1,9,4,6,1,7,1,7,7,10,1,6,2,7,9,8,1,7,8,7,5,11,1,7,1,12,4,6,3,8,1,9,

%U 11,8,1,7,1,13,8,10,9,9,1,7,4,14,1,8,10,15,6,8,1,8,5,11,13,16,11,7,1,9,9,8,1,10,1,9,9

%N Sum divided by GCD of the integer partition with Heinz number n > 1.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Antti Karttunen, <a href="/A316436/b316436.txt">Table of n, a(n) for n = 2..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a>

%p a:= n-> (l-> add(i, i=l)/igcd(l[]))(map(i->

%p numtheory[pi](i[1])$i[2], ifactors(n)[2])):

%p seq(a(n), n=2..100); # _Alois P. Heinz_, Jul 03 2018

%t Table[With[{pms=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Total[pms]/GCD@@pms],{n,2,100}]

%o (PARI) A316436(n) = { my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); sum(i=1, #f~, pis[i]*es[i])/g; }; \\ _Antti Karttunen_, Sep 10 2018

%Y Cf. A056239, A289508, A289509, A290103, A290104, A296150, A316430, A316431, A316432, A316437.

%K nonn

%O 2,3

%A _Gus Wiseman_, Jul 03 2018

%E More terms from _Antti Karttunen_, Sep 10 2018