%I #14 Jul 15 2018 13:24:24
%S 1,0,0,1,0,1,0,1,1,2,0,2,0,3,2,3,0,5,0,3,4,5,0,8,1,6,6,6,0,11,0,8,10,
%T 8,2,18,0,9,14,15,0,19,0,16,21,11,0,34,1,16,24,24,0,30,10,27,30,14,0,
%U 71,0,15,34,38,18,47,0,47,44,36,0,88,0,18,79,63,5
%N Number of integer partitions of n whose length is equal to the GCD of all parts.
%e The a(24) = 8 partitions:
%e (14,10), (22,2),
%e (9,9,6), (12,9,3), (15,6,3), (18,3,3),
%e (8,8,4,4), (12,4,4,4).
%t Table[Length[Select[IntegerPartitions[n],GCD@@#==Length[#]&]],{n,30}]
%o (PARI) a(n) = {my(nb = 0); forpart(p=n, if (gcd(p)==#p, nb++);); nb;} \\ _Michel Marcus_, Jul 03 2018
%Y Cf. A000837, A067538, A074761, A289508, A289509, A290103, A316429, A316430, A316431, A316433.
%K nonn
%O 1,10
%A _Gus Wiseman_, Jul 02 2018