login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of ten.
2

%I #5 Jul 01 2018 18:47:38

%S 1,10,4127,45562,4719041,58003461,3795919780,52052335254,

%T 2772611610514,42268105493955,2037044419366071,34333238955892416,

%U 1578674337291922196,29239755067140936242,1321207703588407017510,26733500408009431631728,1208079945873987947779946

%N Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of ten.

%H Alois P. Heinz, <a href="/A316397/b316397.txt">Table of n, a(n) for n = 10..451</a>

%F a(n) = A262172(n) - A262171(n).

%p b:= proc(u, o, c, k) option remember;

%p `if`(c<0 or c>k, 0, `if`(u+o=0, 1,

%p add(b(u-j, o-1+j, c+1, k), j=1..u)+

%p add(b(u+j-1, o-j, c-1, k), j=1..o)))

%p end:

%p a:= n-> b(n, 0$2, 10)-b(n, 0$2, 9):

%p seq(a(n), n=10..26);

%Y Column k=10 of A258829.

%Y Cf. A262171, A262172.

%K nonn

%O 10,2

%A _Alois P. Heinz_, Jul 01 2018