%I #29 Jan 17 2019 23:15:01
%S 0,1,4,9,6,5,6,9,4,1,0,21,44,69,96,25,56,89,24,61,0,41,84,29,76,25,76,
%T 29,84,41,0,61,24,89,56,25,96,69,44,21,0,81,64,49,36,25,16,9,4,1,0,1,
%U 4,9,16,25,36,49,64,81,0,21,44,69,96,25,56,89,24,61,0,41,84,29
%N a(n) = n^2 mod(10^m), where m is the number of digits in n (written in base 10).
%C The set of the terms is the same as that of A238712.
%H Georg Fischer, <a href="/A316347/b316347.txt">Table of n, a(n) for n = 0..10000</a>, Jan 16 2019 (terms a(0..719585) initially submitted by Christopher D Chamness).
%e n = 13 has 2 digits in base 10, thus a(13) = 169 mod 100 = 69.
%o (Python)
%o i=1
%o while True:
%o m=i
%o j=i**2
%o l=0
%o while True:
%o m=m/10
%o l+=1
%o if m==0:
%o break
%o mod_num = 10**l
%o print j%mod_num
%o i+=1
%o (PARI) a(n) = n^2 % 10 ^ #digits(n) \\ _David A. Corneth_, Jun 30 2018
%o (Perl) my $mod = 10;
%o foreach my $i(0..10000) {
%o print "$i " . (($i * $i) % $mod) . "\n";
%o if (length($i + 1) > length($i)) { $mod *= 10; }
%o } # _Georg Fischer_, Jan 16 2019
%Y Cf. A238712.
%K nonn,base,easy
%O 0,3
%A _Christopher D Chamness_, Jun 29 2018