%I #13 Jul 03 2018 20:51:03
%S 0,1,3,4,2,8,9,7,6,15,16,14,5,13,24,25,23,12,11,22,35,36,34,21,10,20,
%T 33,48,49,47,32,19,18,31,46,63,64,62,45,30,17,29,44,61,80,81,79,60,43,
%U 28,27,42,59,78,99,100,98,77,58,41,26,40,57,76,97,120,121,119,96,75,56,39,38,55,74,95,118,143
%N The square array in A305615 read by antidiagonals.
%F If 1 is added to every term we get the array in A269780, which has an explicit formula for the (i,j)-th term.
%e The array in A305615 begins:
%e ^
%e |
%e 4 |... ... ... ... ...
%e +---------------+
%e 3 | 9 14 12 10 |...
%e +-----------+ |
%e 2 | 4 7 5 |11 |...
%e +-------+ | |
%e 1 | 1 2 | 6 |13 |...
%e +---+ | | |
%e 0 | 0 | 3 | 8 |15 |...
%e +---+---+---+---+---
%e 0 1 2 3 4 ...
%e The first few antidiagonals are:L
%e 0,
%e 1, 3,
%e 4, 2, 8,
%e 9, 7, 6, 15,
%e 16, 14, 5, 13, 24,
%e 25, 23, 12, 11, 22, 35,
%e 36, 34, 21, 10, 20, 33, 48,
%e ...
%Y Cf. A305615, A269501, A269780.
%K nonn,tabl
%O 0,3
%A _N. J. A. Sloane_, Jul 03 2018