%I #4 Jun 25 2018 17:46:27
%S 8,112,601,3653,21825,134426,822258,5056910,31069974,191024741,
%T 1174474898,7221204490,44401068802,273006568441,1678640794552,
%U 10321465657940,63463760910542,390220558915153,2399355322878876
%N Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A316183.
%H R. H. Hardin, <a href="/A316179/b316179.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +16*a(n-2) -43*a(n-3) -97*a(n-4) +142*a(n-5) +21*a(n-6) -90*a(n-7) +403*a(n-8) -124*a(n-9) -608*a(n-10) +630*a(n-11) +284*a(n-12) -400*a(n-13) -597*a(n-14) -326*a(n-15) +246*a(n-16) +292*a(n-17) -25*a(n-18) -42*a(n-19) +223*a(n-20) -39*a(n-21) -46*a(n-22) -56*a(n-23) +16*a(n-24) -25*a(n-25) +6*a(n-26) +11*a(n-27) +5*a(n-28) +a(n-29) +2*a(n-30) for n>34
%e Some solutions for n=5
%e ..0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..0..0..0
%e ..1..0..0..1. .0..1..0..1. .1..1..0..1. .0..0..0..0. .1..0..1..1
%e ..1..0..0..0. .0..1..1..1. .1..1..1..1. .0..0..0..1. .0..1..1..1
%e ..1..1..0..0. .0..1..1..1. .1..1..1..1. .0..0..1..1. .1..1..1..1
%e ..1..1..0..1. .0..1..1..1. .0..1..1..1. .1..1..1..1. .0..1..1..0
%Y Cf. A316183.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jun 25 2018