login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the greatest x such that 1/x + 1/(x+2) + 1/(x+3) = 1.
4

%I #6 Jul 21 2018 23:36:42

%S 1,8,6,6,1,9,8,2,6,2,5,0,9,0,2,2,5,0,5,4,7,3,9,9,4,2,3,0,9,8,6,5,9,1,

%T 4,0,6,2,3,5,9,0,0,7,5,5,7,7,2,8,8,0,4,6,1,9,7,8,4,1,6,7,0,4,8,6,1,1,

%U 1,7,0,7,6,1,0,8,7,1,6,1,9,7,8,2,6,3,9,5,0,3,0,6,6,1,2,8,2,2,5,0,2,8,0,0,0

%N Decimal expansion of the greatest x such that 1/x + 1/(x+2) + 1/(x+3) = 1.

%C Equivalently, the greatest root of x^3 + 2*x^2 - 4*x - 6;

%C Middle root: A316135;

%C Greatest root: A316136.

%C See A305328 for a guide to related sequences.

%F greatest root: -(2/3) + 8/3 cos[1/3 arctan[(3 sqrt[303])/37]]

%F middle: -(2/3) - 4/3 cos[1/3 arctan[(3 sqrt[303])/37]] + (4 sin[1/3 arctan[(3 sqrt[303])/37]])/sqrt[3]

%F least: -(2/3) - 4/3 cos[1/3 arctan[(3 sqrt[303])/37]] - (4 sin[1/3 arctan[(3 sqrt[303])/37]])/sqrt[3]

%e greatest root: 1.8661982625090225055...

%e middle root: -1.2107558809591917224...

%e least root: -2.6554423815498307831...

%t a = 1; b = 1; c = 1; u = 0; v = 2; w = 3; d = 1;

%t r[x_] := a/(x + u) + b/(x + v) + c/(x + w);

%t t = x /. ComplexExpand[Solve[r[x] == d, x]]

%t N[t, 20]

%t u = N[t, 200];

%t RealDigits[u[[1]]] (* A316134, least *)

%t RealDigits[u[[2]]] (* A316135, middle *)

%t RealDigits[u[[3]]] (* A316136, greatest *)

%t RealDigits[8 Cos[ArcTan[3 Sqrt[303]/37]/3]/3 - 2/3, 10, 111][[1]] (* _Robert G. Wilson v_, Jul 21 2018 *)

%Y Cf. A305328, A316134, A316135.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Jul 21 2018