login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Jun 24 2018 16:41:51

%S 2,45,197,1112,6562,36480,204465,1170851,6622412,37527145,213051804,

%T 1207987372,6850738403,38858760572,220384969476,1249936673191,

%U 7089251093164,40207467076807,228041955210057,1293371442017860

%N Number of nX4 0..1 arrays with every element unequal to 1, 2, 3, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A316130.

%H R. H. Hardin, <a href="/A316126/b316126.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A316126/a316126.txt">Empirical recurrence of order 67</a>

%F Empirical recurrence of order 67 (see link above)

%e Some solutions for n=5

%e ..0..1..0..0. .0..0..0..1. .0..0..0..0. .0..1..1..0. .0..1..1..1

%e ..1..1..0..1. .0..1..0..1. .1..0..1..1. .0..1..1..0. .1..0..1..0

%e ..1..1..1..1. .0..1..1..0. .0..0..1..1. .0..0..0..0. .1..0..0..0

%e ..0..1..1..1. .0..1..0..1. .1..1..0..1. .0..0..1..0. .1..0..1..0

%e ..1..1..0..1. .0..0..0..1. .0..1..0..0. .0..1..1..0. .1..1..1..1

%Y Cf. A316130.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 24 2018