login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316084
Product_{k>=1} 1/(1 - a(k)*x^k) = Sum_{k>=0} k!*x^k.
4
1, 1, 4, 17, 92, 566, 4156, 34023, 314348, 3195658, 35703996, 433259908, 5687955724, 80248240822, 1211781628060, 19496367748659, 333041104402860, 6019720779293770, 114794574818830716, 2303327555284622304, 48509766568956367372, 1069982619999485015070
OFFSET
1,3
LINKS
FORMULA
a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - Vaclav Kotesovec, Jun 18 2019
a(2*n-1) = A158094(2*n-1). - Vaclav Kotesovec, Jun 18 2019
EXAMPLE
1/((1-x)*(1-x^2)*(1-4*x^3)*(1-17*x^4)* ... ) = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... .
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 23 2018
STATUS
approved